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The newly derived relationship between the closure traction and the crack opening
displacement by the modified shear-lag model is used to investigate the tensile failure
behaviors of unidirectional fiber reinforced ceramics. The critical stress for matrix cracking
and the critical stress to fracture the fiber are calculated for various crack configurations.
Then, the failure of composite initiates as the applied stress exceeds the smaller of the
matrix cracking stress and the fiber fracture stress. The differences of results between the
present analysis and Marshall and Cox are discussed. Finally, the possible tensile failure
modes and the transition conditions between different failure modes are summarized in
this paper. C© 2000 Kluwer Academic Publishers

1. Introduction
Under tensile loading in the fiber direction, one of two
distinct tensile failures can exhibit for unidirectional
fiber reinforced ceramics in which fibers are weakly
coupled to the matrix. If the net traction carried by the
intact fibers is sufficiently large, the first damage may
be in the form of a crack that extends through the matrix
without fiber failure. Further loading causes the forma-
tion of multiple matrix cracks in the composite. Finally,
the composite fails as fibers break. A comprehensive
analysis to predict the critical stress to propagate the
matrix crack without fiber failure has been given by
Chiang, Chou and Wang [1]. On the other hand, if the
bridging fibers cannot sustain the additional load orig-
inally born by the matrix, the first matrix crack can
cause complete failure of the composite. However, the
closure traction from the unbroken bridging fibers still
can toughen the composite.

Marshallet al. (Refs. [2–4]) extended the Marshall
Cox and Evans (MCE) [5] model to analyze tensile frac-
ture of unidirectional fiber reinforced ceramics. In these
analyses, the fiber strength is assumed to be single-
valued and may be weak enough to be broken in the
wake of a matrix crack. The implication of the assump-
tion of single-valued fiber strength is that the fiber fail-
ure occurs at the crack plane and the fiber failure ini-
tiates from the mouth of the fiber-bridged crack. The
possibility of fiber failure within the matrix due to the
statistical nature of fiber strength cannot be accounted
for by the assumption of single-valued fiber strength.
In their analyses, the critical applied stress to propagate
the matrix crack is determined by the criterion that the
stress intensity at the crack tip attains a critical value. On
the other hand, the critical applied stress to fracture the
fiber is determined by the condition that the fiber in the
crack mouth reaches the assumed single-valued fiber

strength. The failure of a composite is, then, assumed
to initiate as the applied stress exceeds the smaller of
these two critical stresses.

Chiang, Chou and Wang [1] have indicated that the
closure traction distribution of a fiber-bridged crack
cannot be adequately predicted by the MCE model,
in which the matrix shear deformation above the slip-
ping region has not been taken into account. However,
the tensile failure analyses in Refs. [2–4] is based upon
the closure traction predictions. Thus, a more rigorous
prediction of closure traction distribution than that of
the MCE model is needed to properly analyze the ten-
sile failure behaviors of unidirectional fiber reinforced
ceramics. The intention of the present paper is to ex-
tend Chiang, Chou and Wang [1] model to reinvestigate
the tensile failure behaviors of unidirectional fiber re-
inforced ceramics. The present results show that very
different failure modes are predicted for some crack
configurations from the present analysis and the analy-
ses based upon MCE model.

2. Fracture mechanics model
The crack configuration of the present analysis is illus-
trated in Fig. 1, where a straight crack of lengthc com-
prised an initial unbridged lengthc0 and a fiber bridg-
ing lengthd. Composite is loaded by a remote uniform
stressσ normal to the crack plane. The bridging fiber
effect is represented by an equivalent closure traction
distribution which is denoted byT(x), while the crack
opening displacement is denoted by 2u(x). The slipping
between the fiber and matrix is over a distancels, and the
frictional shear stress on the fiber/matrix interface isτs.

Now, let the composite be replaced by an effective
continuum material, the net closure tractionp(X) on the
crack surface can be approximated as
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Figure 1 Schematic representation of crack configuration in which a
crack lengthc comprised an initial unbridged crackc0 and a bridged
crack lengthd.

p(X) = 0 (X < c0/c) (1a)

p(X) = VfT(X) (X ≥ c0/c) (1b)

whereX = x/c andVf is the fiber volume fraction.
For an isotropic material with the Young’s modulus

Ec, and the Poisson’s ratioνc, the analytical solution of
p(X) is related to the entire distribution of crack open-
ing displacementu(X) (Sneddon and Lowengrub [6])

u(X)= 4
(
1− ν2

c

)
c

πEc

1∫
X

s√
s2− X2

{ s∫
0

[σ − p(t)] dt√
s2− t2

}
ds

(2)

where the composite Young’s modulusEc, can be ap-
proximated by the rule-of-mixtures

Ec = Vf Ef + VmEm (3)

The integral Equation 2 contains two unknowns of the
crack opening displacementu(X) and the crack closure
tractionT(X). It is needed to derive one more equation
relatedu(X) andT(X) in order to solve the problem.
Chiang, Chou and Wang [1] has adopted a modified
shear lag model (see Fig. 2) to derive theu(X)-T(X)
relationship:

u = −a(Vf Ef − VmEm)

4τsVmEmEf
T2+ Vf (βλ− 1)

VmEmλ
T

+ aVmEmα + aEf (σ + Vfα)− τsEcβ
2λ

aVmEmEfλ
(4)

Figure 2 The shear-lag model.

where

α = (VfT − σ )Ef

2Ec

+ 1

2

√[
(VfT − σ )Ef

Ec

]2

+ 8τsVmEmEf ln(R̄/a)

GmEc

β = a

2τs

(
α + Efσ

Ec

)

λ = ρ

a

√
Ecα + Ef (σ − VfT)

Ecα

ρ =
√

2GmEc

VmEmEf ln(R̄/a)

In Equation 4,a is the fiber radius and̄R is the equiva-
lent radius of matrix cylinder and its expression is given
by Budiansky, Hutchinson and Evans [7]

ln

(
R̄

a

)
= −2 lnVf + Vm(3− Vf )

4V2
m

(5)

Due to the double integration, Equation 2 is not suitable
for numerical process. A simpler equation involving
only a single integration was given by McCartney [8]:

u(X) = 2
(
1− ν2

c

)
cσ

πEc

∫ 1

0

[
1− VfT(t)

σ

]

× ln

∣∣∣∣
√

1− t2+√1− X2
√

1− t2−√1− X2

∣∣∣∣ dt (6)

Substituting Equation 4 into Equation 6, the nonlinear
integral equation becomes
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T(X) = 0 (X < c0/c) (7a)

T2(X)+ AT(X)+ B= γ
[
π
√

1− X2− Vf

σ

∫ 1

0
T(t)

× ln

∣∣∣∣
√

1− t2+√1− X2
√

1− t2−√1− X2

∣∣∣∣ dt

]
(X ≥ c0/c)

(7b)

Where

A = − 4τsVf Ef (βλ− 1)

aλ(Vf Ef − VmEm)

B = −4τs[aVf Efα + aEf (σ + Vfα)− τsEcβ
2λ]

a2λ(Vf Ef − VmEm)

γ = −8
(
1− ν2

c

)
cτsVmEf Efσ

πa(Vf Ef − VmEm)

The far-field applied stress,σ , can be regarded as a
uniform opening stress acting over the crack surface.
Therefore, the net stress on the crack surface is,σ -
p(x), and the stress intensity factorK of the composite
can be defined as

K = 2
√

c/π
∫ 1

0

[σ − p(X)] dX√
1− X2

(8)

To determine the critical stress for matrix crack propa-
gation, the linear elastic fracture mechanics criterion is
adopted, namely,K = K c

IC. Gao, Mai and Cotterell [9]
assumed that the strain energy release rate of the com-
posite at the crack tip,Gc can be approximated as the
work of fracture of the matrix,0m

Gc = 1− ν2
c

Ec
K c2

IC = 0m = 1− ν2
m

Em
K m2

IC (9)

whereK c
IC andK m

IC are the critical stress intensity fac-
tors of the composite and matrix materials, respectively.
If we further discount the Poisson’s ratio effect, Equa-
tion 9 is reduced to

K c
IC = K m

IC

√
Ec/Em (10)

After obtaining the closure tractionT(X) by solv-
ing Equation 7, the stress intensity of a fiber-bridged
crack is calculated by Equation 8. Then, the critical ap-
plied stress,σ ∗, and the corresponding closure traction,
T∗(X), for a fiber-bridged crack propagating in a com-
posite (K = K c

IC) can be determined for various crack
configurations.

The highest fiber axial stress is located at the lo-
cation of X= c0/c on the crack plane. Therefore, the
fiber failure occurs as the fiber stress atX= c0/c ex-
ceeds the assumed single-valued fiber strengthS. The
critical applied stress,σ #, to initiate the fiber failure is
determined by the following condition

T#(c0/c) = S (11)

3. Composite failure modes
The composite system of Nicalon fiber and LAS glass
matrix is used for the numerical calculations and its
material properties are given in Table I. For the purpose
of comparing the present analysis with Marshall and
Cox (MC) [3], the normalized stress and crack length
defined in their analysis are used

σm = 3√
π

(
1.44K c2

ICV2
f ω

π

)1/3

(12a)

cm =
(

πK c
IC

1.44V2
f ω

)2/3

(12b)

whereω= 8(1− ν2
c )τsEf/aπ1/2VmEm.

The difference in the predicted crack closure trac-
tion distribution between present analysis and MC can
be shown in Fig. 3, in whichT∗(X)/σm-X curves are
plotted for three differentc0 (0, 0.25cm, and 0.5cm,) at
c= cm, andVf = 0.5. The results of MC are also shown
in Fig. 3 for the purpose of comparison. For all three
cases, the results ofT∗(X) by MC approach to 0 at the
crack tip. It implies that the fibers at the crack plane
do not carry any load asX→ 1. This is not a reason-
able result because the fibers at the crack plane should
carry the load which is originally born by the fibers
and matrix in the crack front. From the present analy-
sis, the closure traction,T∗(X), approaches the value
of (Ef/Ec)σ , which is the far-field fiber axial stress, as
X→ 1.

The other main difference between present analysis
and MC is shown in Fig. 4, in whichσ ∗-c0/c andσ #-
c0/c curves are plotted for the case ofc= cm, Vf = 0.5
and SVf = σm. The σ ∗ value of the present analysis
constantly decreases asc0/c increases. However, the
σ ∗ result of MC is constant fromc0/c= 0 to around
0.5 and then decreases still toc0/c= 1. For theσ #-c0/c
distribution, theσ # value of present analysis decreases
initially and then increases gradually to the value of
SVf . On the other hand, theσ # result of MC decreases
slightly and increases dramatically asc0/c→ 1. This
is because the MC model predicted zero crack closure
traction at the crack tip. This unreasonable result causes
the infiniteσ # value asc0/c→ 1.

The σ ∗-c0/c and σ #-c0/c curves of different fiber
fracture strength are plotted in Fig. 5 for the crack
lengths ofc= 0.1cm, 0,5cm, cm at Vf = 0.5. The ma-
trix cracking stressσ ∗ always decreases asc0/c in-
creases for various crack length. However, theσ #-c0/c

TABLE I Properties of SiC/LAS composite

SiC! /LAS@

Ef 200 Gpa
Em 85 Gpa
νm 0.25
a 8µm
Km 2.0 Mpa-

√
m

τs 1-2 MPa

!Nicalon
@Data from Refs. [10] and [11].
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Figure 3 T∗(X)/σm-X distribution.

distribution depends on the crack lengthc. For the case
of c= 0.1cm, the fiber fracture stressesσ # are almost
independent ofc0/c and are equivalent to the value of
SVf , as shown in Fig. 5a. As the crack lengthc increases,
the fiber fracture stressσ # decreases initially and then
increases gradually to the value ofSVf , as shown in
Fig. 5b and c.

When the fiber strength is not sufficiently large, the
fiber fracture may accompany the matrix cracking de-
pending on the fiber strength and the crack configura-
tion. Generally, the failure of a composite initiates when
the applied stress exceeds the smaller stress of the stress
for matrix cracking and the stress to fracture the fiber.
Under the constant applied load, the subsequent fail-
ure process may involve the combination of stable or
unstable matrix cracking and gradual or catastrophic
fiber failure. The various failure modes that depend on
the microstructures of composite and the crack config-
uration are summarized in Table II and the details are
discussed in the following.

Figure 4 Comparison ofσ ∗-c0/c relationships between present analysis
and MC.

Figure 5 The σ ∗-c0/c curves andσ #-c0/c curves at different fiber
strengths for various crack lengths.
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TABLE I I Summary of the failure modes

Failure This failure mode causes the multiple matrix cracking and
mode 1 a large nonlinear strain occurs before the complete

failure of the composite.
Failure Unstable fiber failure accompanies with matrix cracking

mode 2 after Some unstable fiber failure. This causes catastro-
phic composite failure at the applied stressσ #.

Failure Unstable fiber failure occurs initially and is followed by
mode 3 stable fiber failure and finally accompanies with matrix

cracking.
Failure Fibers continue to fail within the matrix after the

mode 4 complete fracture of fibers through the crack length.
Failure Stable matrix cracking occurs first and is followed by

mode 5 unstable fiber failure and finally accompanies with
unstable matrix cracking.

Failure Stable matrix cracking and followed by unstable fiber
mode 6 failure.

Failure Stable matrix cracking followed by unstable fiber failure
mode 7 and finally unstable fiber failure and matrix cracking

occur simultaneously.

3.1. Initially fully-bridged cracks
The matrix cracking stress,σ ∗, and the fiber fracture
stress,σ #, as a function of normalized crack length,
c/cm, are plotted in Fig. 6 for the initially fully-bridged
cracks. Physically, the crack length should be larger
than a fiber diameter for a fiber-bridged crack. There-
fore, the smallest crack for the calculation is chosen as
one fiber diameter (∼0.05cm). If the net fiber strength
is sufficiently large (i.e.SVf/σm > 2.6), the entireσ #

curve is higher thanσ ∗ curve. The matrix crack propa-
gates through the composite completely without caus-
ing fiber failure. Further increasing of the applied load
is needed to fracture fibers. This failure mode causes the
multiple matrix cracking and a large nonlinear stress-
strain curve occurs before the complete failure of com-
posite (Failure mode 1 in Table II).

When the normalized net fiber strengthSVf/σm, is
between 1 and 2.6,σ ∗ curve will interceptσ # curve
at the crack lengthc∗. Two different failure modes
may occur depending on the crack lengthc. For the
initial crack lengthc larger thanc∗, the matrix crack-

Figure 6 The matrix cracking stress,σ ∗, and the fiber fracture stress,
σ #, as a function of normalized crack length,c/cm for the initially fully-
bridged cracks.

ing stress is smaller than the fiber fracture stress as
the crack propagates. The composite failure mode is
the same as the Failure mode 1 in Table II. For the
initial crack lengthc smaller thanc∗, unstable fiber
failure occurs first and then, subsequently, accompa-
nies with unstable matrix cracking. This causes catas-
trophic composite failure at the applied stressσ # (Fail-
ure mode 2 in Table II). This failure mode differs from
the MC model in which the matrix cracking occurs
first.

When the normalized net fiber strengthSVf/σm is
smaller than 1, the fiber failure always occurs first.
The subsequent events depend on the fiber strength and
crack configuration. If the fiber fracture curve can inter-
cept the matrix cracking curve, there are two different
failure modes. The first case is shown in Fig. 7a, in
which the unstable fiber failure occurs first and then
the unstable matrix cracking accompanies fiber frac-
ture. This failure mode is the same as Failure mode 2
in Table II. The second case is illustrated in Fig. 7b,
in which the unstable fiber failure occurs initially and
then the stable fiber failure follows and finally the
unstable matrix cracking accompanies fiber fracture
(Failure mode 3 in Table II). On the other hand, if
the net fiber strength is so weak thatσ #-c0/c curve
cannot interceptσ ∗-c0/c curve, fibers continue to fail
within the matrix after the complete fracture of fibers
through the crack length (Failure mode 4 in Table II).
This failure mode cannot occur by the analysis of MC

Figure 7 Some cases ofσ ∗-c0/c andσ #-c0/c relationships.
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because the fiber fracture stress,σ #, becomes infinite as
c0/c→ 1. It implies that the fiber failure cannot occur
for the crack configurations with small fiber-bridged
length.

3.2. Initially unbridged cracks
The general features of curvesσ ∗ andσ # for initially
unbridged cracks are plotted in Fig. 8 as a function of
d/cm. The failure modes of composites depend on the
fiber strength and crack configuration. For the small
initial crack lengthc (see Fig. 8a), four different failure
modes could occur. As the fiber strength is smaller than
S1, the failure mechanism is described by Failure mode
4 in Table II. When the fiber strength is located between
S1 and S2, the failure mode is the same as Failure mode
2 in Table II. For the fiber strength between S2 and S3,
the stable matrix cracking occurs first and then is fol-
lowed by unstable fiber failure and finally accompanies
unstable matrix cracking (Failure mode 5 in Table II).
As the fiber strength is larger than S3, the multiple ma-
trix cracking described by Failure mode 1 in Table II
occurs.

For the larger initial crack lengthc (Fig. 8b), the
failure mechanisms for the fiber strength smaller than

Figure 8 Some cases ofσ ∗-d/cm andσ #-d/cm relationships.

S1 and larger than S3 are same as those of small ini-
tial crack lengthc, just described above. As the fiber
strength between S1 and S2, the stable matrix crack-
ing is followed by unstable fiber failure (Failure mode
6 in Table II). As the fiber strength between S2 and
S3, the stable matrix cracking is followed by unstable
fiber failure and finally unstable fiber failure and ma-
trix cracking occur simultaneously (Failure mode 7 in
Table II).

3.3. Partially bridged cracks
Compared to initially unbridged cracks, the represen-
tation of a partially bridged zone reduces the stress in-
tensity at the crack tip. The failure modes of cracks
with partially bridged zone depend on the initial crack
lengthc0. If the initial crack lengthc0 is smaller than
the intersection ofσ ∗ andσ # curves (see Fig. 8), the
composite exhibits the similar failure behavior as the
composite with a unbridged crack. On the other hand,
if the initial crack lengthc0 is larger than the inter-
section ofσ ∗ andσ # curves, the failure modes of the
composite are similar to those of initially fully-bridged
cracks.

4. Discussion and conclusions
1. The crack opening displacement-crack closure trac-
tion (u-T) relationship, which accounts the matrix shear
deformation above the slipping length and satisfies the
far-field boundary condition, has been used to analyze
the tensile failure of unidirectional fiber reinforced ce-
ramics. Results show that the newly derivedu-T re-
lationship casts a profound influence on the failure
mode predictions, especially for the crack configura-
tions of small fiber bridging length or alternative the
small cracks.

2. The difference of predicted closure traction be-
tween the present analysis and the MC model can be
shown in Fig. 9, whereT∗(0) is plotted as a function of
crack length for the case of fully-bridged cracks. The

Figure 9 Comparison ofT∗(0)-c/D results between the present analysis
and MC, whereD is fiber diameter.
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results diverge between two analyses as the crack length
approaches zero and they become closer as the crack
length becomes longer. The diverged closure traction
prediction asc→ 0 between two analyses causes the
different failure mode predictions, as demonstrated in
this paper.

3. The major difference in the failure mode predic-
tions can be shown by theσ ∗-c0/c andσ #-c0/c rela-
tionships between two analyses, as illustrated in Fig. 5.
From the Marshall and Cox analysis, the failure of
the composite always initiates from matrix cracking
for the crack configurations ofc0/c→ 1. This is be-
cause the closure traction in their analysis vanishes at
the crack tip (see Fig. 3). This is not physically realistic,
as discussed above. On the other hand, from the present
analysis the failure of the composite could initiate from
the fracture of fibers for the crack configurations of
c0/c→ 1 if the net fiber strength is below a certain
value.

4. The tensile failure behaviors influenced by the fiber
strength, crack configurations and material properties
have been analyzed in the present paper. The possi-
ble tensile failure modes and the transition conditions
between different failure modes are summarized in
Table II.
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