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The newly derived relationship between the closure traction and the crack opening
displacement by the modified shear-lag model is used to investigate the tensile failure
behaviors of unidirectional fiber reinforced ceramics. The critical stress for matrix cracking
and the critical stress to fracture the fiber are calculated for various crack configurations.
Then, the failure of composite initiates as the applied stress exceeds the smaller of the
matrix cracking stress and the fiber fracture stress. The differences of results between the
present analysis and Marshall and Cox are discussed. Finally, the possible tensile failure
modes and the transition conditions between different failure modes are summarized in
this paper. © 2000 Kluwer Academic Publishers

1. Introduction strength. The failure of a composite is, then, assumed
Under tensile loading in the fiber direction, one of two to initiate as the applied stress exceeds the smaller of
distinct tensile failures can exhibit for unidirectional these two critical stresses.
fiber reinforced ceramics in which fibers are weakly Chiang, Chou and Wang [1] have indicated that the
coupled to the matrix. If the net traction carried by theclosure traction distribution of a fiber-bridged crack
intact fibers is sufficiently large, the first damage maycannot be adequately predicted by the MCE model,
be in the form of a crack that extends through the matrixn which the matrix shear deformation above the slip-
without fiber failure. Further loading causes the forma-ping region has not been taken into account. However,
tion of multiple matrix cracks in the composite. Finally, the tensile failure analyses in Refs. [2—4] is based upon
the composite fails as fibers break. A comprehensivéhe closure traction predictions. Thus, a more rigorous
analysis to predict the critical stress to propagate therediction of closure traction distribution than that of
matrix crack without fiber failure has been given by the MCE model is needed to properly analyze the ten-
Chiang, Chou and Wang [1]. On the other hand, if thesile failure behaviors of unidirectional fiber reinforced
bridging fibers cannot sustain the additional load orig-ceramics. The intention of the present paper is to ex-
inally born by the matrix, the first matrix crack can tend Chiang, Chou and Wang [1] model to reinvestigate
cause complete failure of the composite. However, théhe tensile failure behaviors of unidirectional fiber re-
closure traction from the unbroken bridging fibers still inforced ceramics. The present results show that very
can toughen the composite. different failure modes are predicted for some crack
Marshallet al. (Refs. [2-4]) extended the Marshall configurations from the present analysis and the analy-
Coxand Evans (MCE) [5] model to analyze tensile frac-ses based upon MCE model.
ture of unidirectional fiber reinforced ceramics. In these
analyses, the fiber strength is assumed to be single-
valued and may be weak enough to be broken in th@. Fracture mechanics model
wake of a matrix crack. The implication of the assump-The crack configuration of the present analysis is illus-
tion of single-valued fiber strength is that the fiber fail- trated in Fig. 1, where a straight crack of lengttom-
ure occurs at the crack plane and the fiber failure iniprised an initial unbridged lengtty and a fiber bridg-
tiates from the mouth of the fiber-bridged crack. Theing lengthd. Composite is loaded by a remote uniform
possibility of fiber failure within the matrix due to the stresss normal to the crack plane. The bridging fiber
statistical nature of fiber strength cannot be accountedffect is represented by an equivalent closure traction
for by the assumption of single-valued fiber strength.distribution which is denoted by (x), while the crack
In their analyses, the critical applied stress to propagatepening displacementis denoted l®). The slipping
the matrix crack is determined by the criterion that thebetween the fiber and matrix is over a distalgcend the
stress intensity at the crack tip attains a critical value. Orfrictional shear stress on the fiber/matrix interfacesis
the other hand, the critical applied stress to fracture the Now, let the composite be replaced by an effective
fiber is determined by the condition that the fiber in thecontinuum material, the net closure tractio(X) on the
crack mouth reaches the assumed single-valued fiberack surface can be approximated as
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Figure 1 Schematic representation of crack configuration in which a
crack lengthc comprised an initial unbridged cradg and a bridged
crack lengthd.

p(X) =0 (X < co/0)
P(X) = UT(X) (X = co/C)

(1a)
(1b)

whereX = x/c andV is the fiber volume fraction.

For an isotropic material with the Young’s modulus
E¢, and the Poisson’s ratig, the analytical solution of
p(X) is related to the entire distribution of crack open-
ing displacement( X) (Sneddon and Lowengrub [6])
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where the composite Young's modulls, can be ap-
proximated by the rule-of-mixtures

Ec = Vf Ef + Vm Em (3)
The integral Equation 2 contains two unknowns of th
crack opening displacememn{X) and the crack closure
tractionT (X). It is needed to derive one more equation
relatedu(X) and T (X) in order to solve the problem.

Chiang, Chou and Wang [1] has adopted a modified

shear lag model (see Fig. 2) to derive th(eX)-T (X)
relationship:

_ _a(Vf Ef — VimEm) 2 Vi(Br — 1)
B A7V Em Eg VinEmh

(4)

5450

jg-—R —>

i

=

O

Figure 2 The shear-lag model.
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In Equation 4a is the fiber radius an®is the equiva-

lent radius of matrix cylinder and its expression is given
by Budiansky, Hutchinson and Evans [7]

"(2)

Due to the double integration, Equation 2 is not suitable
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€or numerical process. A simpler equation involving

only a single integration was given by McCartney [8]:

u(X) = 72(1;5)“ fo 1 [1_ sz(t)}
" V1-t24+V1-X2 (©)

n
VI—t2-J/1-X2

Substituting Equation 4 into Equation 6, the nonlinear
integral equation becomes



T(X)=0 (X < cp/C) (7a) 3. Composite failure modes
Ve [l The composite system of Nicalon fiber and LAS glass
T2(X)+AT(X)+B=y [n«/l— xz_ 1 / T(t)  matrix is used for the numerical calculations and its
o Jo material properties are given in Table I. For the purpose
of comparing the present analysis with Marshall and
dt} (X > co/C) Cox (MC) [3], the normalized stress and crack length

V1-t2+J/1- X2

x In
J1-12-/1- X2 defined in their analysis are used
7b
(70) 3 [L44KEVPw\Y?
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B 4rJaViEra 4+ aE(o + Vi) — TsEc%A] whereo = 8(1— v8)zsEr/an/?VnEn.
- a2\ (Vs Ef — VinEm) The difference in the predicted crack closure trac-
tion distribution between present analysis and MC can
8(1 — vZ)ctsVimEsEfo be shown in Fig. 3, in whici *(X)/om-X curves are
Yy == 7a(VeEf — VmEm) plotted for three different (0, 0.2%, and 0.8y,) at

C=Cy, andV; = 0.5. The results of MC are also shown
The far-field applied stress;, can be regarded as a in Fig. 3 for the purpose of comparison. For all three
uniform opening stress acting over the crack surface¢ases, the results af*(X) by MC approach to 0 at the
Therefore, the net stress on the crack surfaceris, crack tip. It implies that the fibers at the crack plane
p(x), and the stress intensity factiérof the composite  do not carry any load aX — 1. This is not a reason-

can be defined as able result because the fibers at the crack plane should
carry the load which is originally born by the fibers
Yo — p(X)]dX and matrix in the crack front. From the present analy-
K =2yc/n ﬁ (8) sis, the closure tractior; *(X), approaches the value
0 B of (Es/E¢)o, which is the far-field fiber axial stress, as
X—1.

To determine the critical stress for matrix crack propa- - .
gation, the linear elastic fracture mechanics criterion is The other main difference betvx_/eef present a’;a'ys's
adopted, namely = K. Gao, Mai and Cotterell [9] and MC is shown in Fig. 4, in which™-co/c ando™-
assumed that the strain energy release rate of the corffe/C curves are plotted for the casews: Cm, Vi =0.5

— * i
posite at the crack tipi. can be approximated as the and SV =om. Theo value_ of the present analysis
work of fracture of the matrixT",, constantly decreases ag/c increases. However, the

o* result of MC is constant frongy/c =0 to around
1,2 0.5 and then decreases stilldgyc = 1. For theo#-cy/c
K{gz (9)  distribution, thes* value of present analysis decreases
Em initially and then increases gradually to the value of
S\{. On the other hand, the” result of MC decreases

Wherechc and K|r8 are the critical stress intenSity fac- S“ghtly and increases dramatica”y QS/C_> 1. This
tors of the composite and matrix materials, respectivelyis hecause the MC model predicted zero crack closure
If we further discount the Poisson’s ratio effect, Equa-traction at the crack tip. This unreasonable result causes

l—vg
Ec

GC: Kfé:l_‘m=

tion 9 is reduced to the infinitec* value ascy/c — 1.
The o*-co/c and o¥-co/c curves of different fiber
Kic = Kicv Ec/Em (10)  fracture strength are plotted in Fig. 5 for the crack

o _ lengths ofc=0.1cy, 0,5n, ¢m at Vs =0.5. The ma-
After obtaining the closure tractioff (X) by solv-  trix cracking stress* always decreases as/c in-

ing Equation 7, the stress intensity of a fiber-bridgedcreases for various crack length. However, dfieco/c
crack is calculated by Equation 8. Then, the critical ap-

plied stressg*, and the corresponding closure traction,
T*(X)’ for a fiber-bridged crack Pmpagatmg INa COM-TABLE | Properties of SiC/LAS composite
posite K = K%.) can be determined for various crack

configurations. SIC/LAS®

The highest fiber axial stress is located at the lo- f 200 Gpa
cation of X = co/c on the crack plane. Therefore, the ¢ 85 Gpa
fiber failure occurs as the fiber stressXat=cy/c ex- v, 0.25
ceeds the assumed single-valued fiber strefgifhe a 8.um
critical applied stresss #, to initiate the fiber failure is  Xm ig ":"AFF’)a'«/m
determined by the following condition s o Mra

u 'Nicalon
T*(co/c) = S (11)  @patafrom Refs. [10] and [11].
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Figure 3 T*(X)/om-X distribution.

distribution depends on the crack lengttror the case
of c=0.1cy, the fiber fracture stressed are almost
independent o€y/c and are equivalent to the value of
S\, asshownin Fig. 5a. Asthe crack lengihcreases,
the fiber fracture stress” decreases initially and then
increases gradually to the value 8M, as shown in
Fig. 5b and c.

When the fiber strength is not sufficiently large, the
fiber fracture may accompany the matrix cracking de-
pending on the fiber strength and the crack configura- &
tion. Generally, the failure of a composite initiates when
the applied stress exceeds the smaller stress of the stre
for matrix cracking and the stress to fracture the fiber.
Under the constant applied load, the subsequent fail-
ure process may involve the combination of stable or
unstable matrix cracking and gradual or catastrophic
fiber failure. The various failure modes that depend on
the microstructures of composite and the crack config-

o Ll L] L v J
0.0 0.2 04 0.6 0.8 1.0
colc
Figure 4 Comparison o0& *-cp/crelationships between present analysis
bs and MC.
3 ‘
;‘ cnl.1c ro‘ SVioax2.6

14

Uratlon are Summarlzed |n Table II and the detal'S ar&igure 5 The U*-CO/C curves ando—#_co/c curves at different fiber

discussed in the following.
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TABLE Il Summary of the failure modes ing stress is smaller than the fiber fracture stress as
Failure This failure mode causes the multiple matrix cracking andtﬂe crack propﬁ'gate?' The Cgmpo.SIte fglllure mOdeh IS
mode 1 a large nonlinear strain occurs before the complete t e same as the Failure mode 1 in Table II. FOI‘ the
failure of the composite. initial crack lengthc smaller thanc*, unstable fiber
Failure Unstable fiber failure accompanies with matrix cracking failure occurs first and then, subsequently, accompa-
mode 2 after Some unstable fiber failure. This causes catastro- njes with unstable matrix cracking. This causes catas-
phic composite failure at the applied stre<S trophic composite failure at the applied stre$gFail-

Failure Unstable fiber failure occurs initially and is followed by ) . . .
mode 3 stable fiber failure and finally accompanies with matrix ure mode 2 in T?‘ble ”)' This fa”ure. mode O!'ffefs from
cracking. the MC model in which the matrix cracking occurs
Failure Fibers continue to fail within the matrix after the first.
r_Tode 4 colmplete_fractulr((_e of fibers t?_rough thefcrl?ck length. When the normalized net fiber strenm/orm is
Failure = Stable matrix cracking occurs firstand is followed by gy qjj6r than 1, the fiber failure always occurs first.
mode 5 unstable fiber failure and finally accompanies with .
unstable matrix cracking. The subsequent events depend on the fiber strength and
Failure Stable matrix cracking and followed by unstable fiber ~ crack configuration. If the fiber fracture curve can inter-
mode 6 failure. cept the matrix cracking curve, there are two different

Failure Stable matrix cracking followed by unstable fiber failure  fgjlure modes. The first case is shown in Fig. 7a, in
mode 7 and fln_aIIy unstable fiber failure and matrix cracking which the unstable fiber failure occurs first and then
occur simultaneously. . . . .
the unstable matrix cracking accompanies fiber frac-
ture. This failure mode is the same as Failure mode 2
in Table Il. The second case is illustrated in Fig. 7b,
3.1. Initially fully-bridged cracks in which the unstable fiber failure occurs initially and
The matrix cracking stress;*, and the fiber fracture then the stabl_e fiber _fallure foIIows.and_ finally the
stresso, as a function of normalized crack length, unstable matrix cracking accompanies fiber fracture
¢/Cm, are plotted in Fig. 6 for the initially fully-bridged ~(Failure mode 3 in Table 1I). On the other hand, if
cracks. Physically, the crack length should be largefh® net fiber stre*ngth is so weak tha’f-cq/c curve
than a fiber diameter for a fiber-bridged crack. There-£annot interceps*-Co/c curve, fibers continue to falil

fore, the smallest crack for the calculation is chosen ad/ithin the matrix after the complete fracture of fibers
one fiber diameter€0.05¢y). If the net fiber strength  through the crack length (Failure mode 4 in Table I1).
is sufficiently large (i.eS\M/om > 2.6), the entires” This failure mode cannot occur by the analysis of MC

curve is higher thaa* curve. The matrix crack propa-
gates through the composite completely without caus-
ing fiber failure. Further increasing of the applied load . 2.0
is needed to fracture fibers. This failure mode causes th
multiple matrix cracking and a large nonlinear stress-
strain curve occurs before the complete failure of com-
posite (Failure mode 1 in Table II).

When the normalized net fiber streng\/on,, is g
between 1 and 2.67* curve will intercepto® curve ®
at the crack lengtlc*. Two different failure modes
may occur depending on the crack lengthFor the
initial crack lengthc larger thanc*, the matrix crack-
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Figure 6 The matrix cracking stress;*, and the fiber fracture stress, (b)
o#, as a function of normalized crack lengticm for the initially fully-
bridged cracks. Figure 7 Some cases af*-cy/c ando?-cy/c relationships.
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because the fiber fracture stres$,becomes infiniteas  S1 and larger than S3 are same as those of small ini-
co/c — 1. Itimplies that the fiber failure cannot occur tial crack lengthe, just described above. As the fiber

for the crack configurations with small fiber-bridged strength between S1 and S2, the stable matrix crack-
length. ing is followed by unstable fiber failure (Failure mode

6 in Table II). As the fiber strength between S2 and
S3, the stable matrix cracking is followed by unstable
fiber failure and finally unstable fiber failure and ma-

The general features of curved anda* for initially trix cracking occur simultaneously (Failure mode 7 in

unbridged cracks are plotted in Fig. 8 as a function of'2Pl€ Il)-

d/cm. The failure modes of composites depend on the

fiber strength and crack configuration. For the small

initial crack lengtrc (see Fig. 8a), four different failure 3.3. Partially bridged cracks

modes could occur. As the fiber strength is smaller thaffompared to initially unbridged cracks, the represen-

S1, the failure mechanism is described by Failure modéation of a partially bridged zone reduces the stress in-

4in Table Il. When the fiber strength is located betweeriensity at the crack tip. The failure modes of cracks

S1and S2, the failure mode is the same as Failure mod#ith partially bridged zone depend on the initial crack

2 in Table 1. For the fiber strength between S2 and S3lengthco. If the initial crack lengthco is smaller than

the stable matrix cracking occurs first and then is fol-the intersection of* ando* curves (see Fig. 8), the

lowed by unstable fiber failure and finally accompaniescomposite exhibits the similar failure behavior as the

unstable matrix cracking (Failure mode 5 in Table I1). composite with a unbridged crack. On the other hand,

As the fiber strength is larger than S3, the multiple maif the initial crack Iengthco is larger than the inter-

trix cracking described by Failure mode 1 in Table Il Section ofo* ando* curves, the failure modes of the

occurs. composite are similar to those of initially fully-bridged
For the larger initial crack length (Fig. 8b), the —cracks.

failure mechanisms for the fiber strength smaller than

3.2. Initially unbridged cracks

4. Discussion and conclusions

4 1. The crack opening displacement-crack closure trac-
tion (u-T) relationship, which accounts the matrix shear
deformation above the slipping length and satisfies the
far-field boundary condition, has been used to analyze
the tensile failure of unidirectional fiber reinforced ce-

a* ramics. Results show that the newly derived re-
e - lationship casts a profound influence on the failure
mode predictions, especially for the crack configura-
tions of small fiber bridging length or alternative the
small cracks.
st 2. The difference of predicted closure traction be-
tween the present analysis and the MC model can be
shown in Fig. 9, wherd@ *(0) is plotted as a function of
crack length for the case of fully-bridged cracks. The
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Figure 9 Comparison of *(0)-c/ D results between the present analysis
Figure 8 Some cases af*-d/cy, ando®-d/cy, relationships. and MC, whereD is fiber diameter.
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